Login / Signup

Structural and Thermal Characterization of Protein Isolates from Australian Lupin Varieties as Affected by Processing Conditions.

Lavaraj DevkotaKonstantina KyriakopoulouRobert E BergiaSushil Dhital
Published in: Foods (Basel, Switzerland) (2023)
Proteins from the full and defatted flours of L. angustifolius cv Jurien and L. albus cv Murringo were prepared using alkaline extraction and iso-electric precipitation. Isolates were either freeze dried or spray dried or pasteurized at 75 ± 3 °C/5 min before freeze-drying. Various structural properties were investigated to elucidate the varietal and processing-induced effect on molecular and secondary structure. Irrespective of processing, isolated proteins had a similar molecular size, with α-conglutin (412 kDa) and β-conglutin (210 kDa) being principal fractions for the albus and angustifolius variety, respectively. Smaller peptide fragments were observed for the pasteurized and spray dried samples, indicating some degree of processing-induced changes. Furthermore, secondary structure characterization by Fourier-transform-infrared and circular dichroism spectroscopy showed β-sheet and α-helical structure being the dominant structure, respectively. Thermal characterization showed two denaturation peaks corresponding to β-conglutin (T d = 85-89 °C) and α-conglutin (T d = 102-105 °C) fractions. However, the enthalpy values for α-conglutin denaturation were significantly higher for albus species, which corroborates well with higher amounts of heat stable α-conglutin present. Amino acid profile was similar for all samples with limiting sulphur amino acid. In summary, commercial processing conditions did not have a profound effect on the various structural properties of lupin protein isolates, and properties were mainly determined by varietal differences.
Keyphrases
  • amino acid
  • high glucose
  • genetic diversity
  • human milk
  • heat shock protein
  • preterm infants
  • protein protein
  • heat stress