Investigating the Relationship between Epigenetic Age and Cardiovascular Risk in a Population with Overweight/Obesity.
Davide MarinelloChiara FaveroBenedetta AlbettiDavide BarbutoLuisella VignaAngela Cecilia PesatoriValentina BollatiLuca FerrariPublished in: Biomedicines (2024)
Introduction : Cardiovascular diseases stand as the leading global cause of mortality. Major modifiable risk factors encompass overweight/obese conditions, high blood pressure, elevated LDL cholesterol, diabetes, smoking, secondhand smoke exposure, unhealthy diet, and physical inactivity. In the present study, we explored the relationship between cardiovascular risk factors and epigenetic age (DNAm age), an estimate reflecting an individual's actual physiological functionality and overall health. Additionally, we assessed the association between DNAm age acceleration and cardiovascular risk, as evaluated through the Framingham risk score (FRS). Methods : The study includes 190 subjects with overweight/obese conditions. We calculated their DNAm age using Zbieć-Piekarska et al.'s DNAm age estimator on five sets of CpGs analyzed in the peripheral leucocytes. Linear regression models were employed to test the associations. Results : Various parameters contributing to increased cardiovascular risk were associated with DNAm age acceleration, such as systolic blood pressure (β = 0.045; SE = 0.019; p = 0.019), heart rate (β = 0.096; SE = 0.032; p = 0.003), blood glucose (β = 0.025; SE = 0.012; p = 0.030), glycated hemoglobin (β = 0.105; SE = 0.042; p = 0.013), diabetes (β = 2.247; SE = 0.841; p = 0.008), and menopausal conditions (β = 2.942; SE = 1.207; p = 0.016), as well as neutrophil (β = 0.100; SE = 0.042; p = 0.018) and granulocyte (β = 0.095; SE = 0.044; p = 0.033) counts. Moreover, DNAm age acceleration raised the FRS (∆% 5.3%, 95% CI 0.8; 9.9, p = 0.019). Conclusion : For the first time, we report that cardiovascular risk factors accelerated DNAm age in a selected population of hypersusceptible individuals with overweight or obesity. Our results highlight the potential of DNAm age acceleration as a biomarker of cumulative effects in cardiovascular risk assessment.
Keyphrases
- blood pressure
- weight loss
- cardiovascular risk factors
- heart rate
- type diabetes
- cardiovascular disease
- metabolic syndrome
- physical activity
- risk assessment
- blood glucose
- risk factors
- weight gain
- dna methylation
- gene expression
- glycemic control
- adipose tissue
- mental health
- bariatric surgery
- left ventricular
- body mass index
- social media
- peripheral blood
- hypertensive patients