Antimicrobial efficacy of copper-doped titanium surfaces for dental implants.
Monika Astasov-FrauenhofferSally KoegelTuomas WaltimoAndrea ZimmermannCyril WalkerIrmgard Hauser-GerspachChristiane JungPublished in: Journal of materials science. Materials in medicine (2019)
The aim of this in vitro study was to quantify the antibacterial effect of a copper-deposited titanium surface as a model for dental implants on the peri-implantitis-associated strain Porphyromonas gingivalis (DSM 20709). A spark-assisted anodization method in a combined deposition-anodization process was applied to deposit copper on discs made of titanium. This method allows the deposition of different concentrations of copper on the surface by varying the process time. Conventional culturing was used to investigate the adhesion of P. gingivalis onto the discs over 2, 4, and 6 h as well as to study the antibacterial effect of copper released in solution. The viability of the bacterial cells is strongly inhibited on copper-deposited discs and reaches a CFU reduction of 3 log-units after 6 h in comparison to the reference. The copper released in solution causes a reduction of 4 log-units after a 6 h incubation time. With a 6 h incubation time, the CFU count decreases with increasing copper concentrations on the disc (by 2% for the 1.3 µg/disc; 32% for the 5.6 µg/disc; and 34% for the 9.5 µg/disc). However, at a higher copper concentration of 17.7 µg/disc, after 6 h, the decrease in the CFU count is less pronounced than that observed in solution, where a further decrease is observed. In conclusion, copper-functionalized titanium significantly reduces the survival of adhered bacteria and decreases the viable bacterial count in the environment surrounding the titanium. Thus, the area surrounding implants is being protected by copper released from the surface, forming a "safe zone" for improved implant healing.