Login / Signup

Structure-based virtual screening identifies small molecule inhibitors of O-fucosyltransferase SPINDLY.

Yalikunjiang AizeziHongming ZhaoZhenzhen ZhangYang BiQiuhua YangGuangshuo GuoHongliang ZhangHongwei GuoKai JiangZhi-Yong Wang
Published in: bioRxiv : the preprint server for biology (2023)
Protein O-glycosylation is a nutrient-signaling mechanism that plays essential roles in maintaining cellular homeostasis across different species. In plants, SPINDLY (SPY) and SECRET AGENT (SEC) catalyze posttranslational modifications of hundreds of intracellular proteins by O-fucose and O-linked N-acetylglucosamine, respectively. SPY and SEC play overlapping roles in cellular regulation and loss of both SPY and SEC causes embryo lethality in Arabidopsis. Using structure-based virtual screening of chemical libraries followed by in vitro and in planta assays, we identified a S PY O - f ucosyltransferase i nhibitor (SOFTI). Computational analyses predicted that SOFTI binds to the GDP-fucose-binding pocket of SPY and competitively inhibits GDP-fucose binding. In vitro assays confirmed that SOFTI interacts with SPY and inhibits its O-fucosyltransferase activity. Docking analysis identified additional SOFTI analogs that showed stronger inhibitory activities. SOFTI treatment of Arabidopsis seedlings decreased protein O-fucosylation and caused phenotypes similar to the spy mutants, including early seed germination, increased root hair density, and defect in sugar-dependent growth. By contrast, SOFTI had no visible effect on the spy mutant. Similarly, SOFTI inhibited sugar-dependent growth of tomato seedlings. These results demonstrate that SOFTI is a specific SPY O-fucosyltransferase inhibitor and a useful chemical tool for functional studies of O-fucosylation and potentially for agricultural management.
Keyphrases