Login / Signup

Enantiomeric separation of Novel Psychoactive Substances by capillary electrophoresis using (+)-18-crown-6-tetracarboxylic acid as chiral selector.

Johannes S HägeleMartin G Schmid
Published in: Chirality (2018)
In the recent years, hundreds of Novel Psychoactive Substances (NPS) have entered both the European and the global drug market. These drugs, which are mainly used for recreational matters, have caused serious social problems. Every year, the spectrum of these misused drugs is enlarged by new derivatives, which are produced by modifications of basic structures of already well-known substances. Additionally, a lot of them possess a stereogenic center which leads to 2 enantiomeric forms. The fact that the pharmacological effects and potencies of the enantiomers of these chiral NPS may differ can be assumed from a broad spectrum of active pharmaceutical ingredients. For this reason, analytical method development regarding enantiomeric separation for these classes of substances is of great pharmaceutical and medical interest. The aim of this work was to create an easy-to-prepare chiral capillary electrophoresis method for the enantioseparation of NPS which contains a primary amino group by means of (+)-18-crown-6-tetracarboxylic acid as chiral selector. Novel Psychoactive Substances were purchased at various Internet stores or represent samples seized by Austrian police. The effects of selector concentration, the electrolyte composition, and the addition of organic modifiers to the background electrolyte on enantioseparation were investigated. Under optimized conditions, the use of 20-mM (+)-18-crown-6-tetracarboxylic acid, 10-mM Tris, and 30-mM citric acid buffer at pH 2.10 turned out to be effective. Fifteen of 24 tested NPS were resolved in their enantiomers within 15 minutes. It was found that all NPS were traded as racemic mixtures.
Keyphrases
  • capillary electrophoresis
  • mass spectrometry
  • liquid chromatography
  • drinking water
  • ionic liquid
  • healthcare
  • mental health
  • oxide nanoparticles
  • high resolution
  • drug induced
  • health information
  • social media