Naphthobisthiadiazole-Based Selenophene-Incorporated Quarterchalcogenophene Copolymers for Field-Effect Transistors and Polymer Solar Cells.
Fong-Yi CaoFang-Yu LinCheng-Chun TsengKai-En HungJhih-Yang HsuYen-Chen SuYen-Ju ChengPublished in: ACS applied materials & interfaces (2019)
In this research, we developed six new selenophene-incorporated naphthobisthiadiazole-based donor-acceptor polymers PNT2Th2Se-OD, PNT2Se2Th-OD, PNT4Se-OD, PNT2Th2Se-DT, PNT2Se2Th-DT, and PNT4Se-DT. The structure-property relationships have been systematically established through the comparison of their structural variations: (1) isomeric biselenophene/bithiophene arrangement between PNT2Th2Se and PNT2Se2Th polymers, (2) biselenophene/bithiophene and quarterselenophene donor units between PNT2Th2Se/PNT2Se2Th and PNT4Se polymers, and (3) side-chain modification between the 2-octyldodecylthiophene (OD)- and 2-decyltetradecyl (DT)-series polymers. The incorporation of selenophene units in the copolymers induces stronger charge transfer to improve the light-harvesting capability while maintaining the strong intermolecular interactions to preserve the intrinsic crystallinity for high carrier mobility. The organic field-effect transistor device using PNT2Th2Se-OD achieved a high hole mobility of 0.36 cm2 V-1 s-1 with an on/off ratio of 1.9 × 105. The solar cells with PNT2Th2Se-OD:PC71BM exhibited a power conversion efficiency of 9.47% with a Voc of 0.68 V, an fill factor of 67%, and an impressive Jsc of 20.69 mA cm-2.
Keyphrases