Login / Signup

In Situ Phosphatizing of Triphenylphosphine Encapsulated within Metal-Organic Frameworks to Design Atomic Co1-P1N3 Interfacial Structure for Promoting Catalytic Performance.

Jiawei WanZhenghang ZhaoHuishan ShangBo PengWenxing ChenJiajing PeiLirong ZhengJuncai DongRui CaoRitimukta SarangiZhuoli JiangDanni ZhouZhongbin ZhuangJiaTao ZhangDingsheng S WangYadong Li
Published in: Journal of the American Chemical Society (2020)
The engineering coordination environment offers great opportunity in performance tunability of isolated metal single-atom catalysts. For the most popular metal-Nx (MNx) structure, the replacement of N atoms by some other atoms with relatively weak electronegativity has been regarded as a promising strategy for optimizing the coordination environment of an active metal center and promoting its catalytic performance, which is still a challenge. Herein, we proposed a new synthetic strategy of an in situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks for designing atomic Co1-P1N3 interfacial structure, where a cobalt single atom is costabilized by one P atom and three N atoms (denoted as Co-SA/P-in situ). In the acidic media, the Co-SA/P-in situ catalyst with Co1-P1N3 interfacial structure exhibits excellent activity and durability for the hydrogen evolution reaction (HER) with a low overpotential of 98 mV at 10 mA cm-2 and a small Tafel slope of 47 mV dec-1, which are greatly superior to those of catalyst with Co1-N4 interfacial structure. We discover that the bond-length-extended high-valence Co1-P1N3 atomic interface structure plays a crucial role in boosting the HER performance, which is supported by in situ X-ray absorption fine structure (XAFS) measurements and density functional theory (DFT) calculation. We hope this work will promote the development of high performance metal single-atom catalysts.
Keyphrases