Login / Signup

Manipulation of the Topological Ferromagnetic State in a Weyl Semimetal by Spin-Orbit Torque.

Lizhu RenLiang LiuXiaohe SongTieyang ZhaoXiangjun XingYuan-Ping FengJingsheng ChenKie Leong Teo
Published in: Nano letters (2023)
Magnetic Weyl semimetals (MWSMs) exhibit unconventional transport phenomena, such as large anomalous Hall (and Nernst) effects, which are absent in spatial inversion asymmetry WSMs. Compared with its nonmagnetic counterpart, the magnetic state of a MWSM provides an alternative way for the modulation of topology. Spin-orbit torque (SOT), as an effective means of electrically controlling the magnetic states of ferromagnets, may be used to manipulate the topological magnetic states of MWSMs. Here we confirm the MWSM state of high-quality Co 2 MnGa film by systematically investigating the transport measurements and demonstrating that the magnetization and topology of Co 2 MnGa can be electrically manipulated. The electrical and magnetic optical measurements further reveal that the current-induced SOT switches the topological magnetic state in a 180-degree manner by applying positive/negative current pulses and in a 90-degree manner by alternately applying two orthogonal current pulses. This work opens up more opportunities for spintronic applications based on topological materials.
Keyphrases