Formulation and Characterization of Nanoparticulate Drug Carrier System for Lacidipine.
Ashveta Anant DessaiMrunali Navin KantakCleona Elizabeth Mary DCruzLalit KumarPrashant Jivaji BhideRupesh Kalidas ShirodkarPublished in: Assay and drug development technologies (2023)
Lacidipine, a calcium channel antagonist, is primarily used to treat hypertension. It is classified as a Biopharmaceutics Classification System Class II drug and exhibits an oral bioavailability of 10% due to its extensive hepatic first-pass metabolism. This research study focused on formulating lacidipine-loaded cubosomal nanovesicles developed into rapidly dissolving oral films as an alternative to overcome the downsides faced by conventional antihypertensive therapy. Lacidipine-loaded cubosomes were prepared utilizing a top-down technique using lipid and surfactant and were further developed into fast dissolving oral films. Box-Behnken design was used for the optimization of process variables to achieve minimum particle size and greater entrapment efficiency of the nanovesicles, and response data were statistically evaluated. The optimized cubosomal dispersions upon characterization reported particle size within nanorange (116.8-341 nm) and an entrapment efficiency of 88.15%-97.1%, with 91.72% of total drug content. Morphological studies revealed uniformly dispersed vesicles with cubic to spherical shape. Oral rapidly dissolving films, after evaluation, were reported to have transparent to opaque appearance with a highly porous nature, which was confirmed by scanning electron microscopic imaging and displayed uniformity in weight and thickness and reported optimum mechanical strength and considerable flexibility, with disintegration time of 37.67 ± 3.68 s and exhibited 91.44% ± 1.65% in vitro drug release after 6 min. Short-term stability studies conducted on films at 25°C ± 2°C and 60% ± 5% relative humidity for 3 months demonstrated no significant variation in morphological and mechanical properties. Therefore, lacidipine-loaded cubosomal rapid dissolving oral films may be a promising formulation approach for the management of hypertension.