Login / Signup

Reduced Graphene Oxide/Carbon Paper for the Anode Diffusion Layer of a Micro Direct Methanol Fuel Cell.

Dacheng ZhangKang LiZiten WangZhengang Zhao
Published in: Nanomaterials (Basel, Switzerland) (2022)
The diffusion layer (DL) in the structure of the membrane electrode assembly (MEA) of a micro direct methanol fuel cell ( μ DMFC) plays an essential role in reactant/product mass transfer and catalyst loading. The material selection and structure design of the μ DMFC affects its performance. In this work, a reduced graphene oxide/carbon paper (rGO/CP) was proposed and prepared for the anode DL of a μ DMFC. It was prepared using electrophoretic sedimentation combined with an in situ reduction method. The rGO/CP reduced the cell's ohmic and charge transfer resistances. Meanwhile, it provided more significant mass transfer resistance to reduce the methanol crossover, allowing the cell to operate stably at higher concentrations for a longer duration than conventional μ DMFCs. The experimental results showed that the maximum power density increased by 53% compared with the traditional anode DL of carbon paper.
Keyphrases
  • reduced graphene oxide
  • gold nanoparticles
  • single cell
  • cell therapy
  • carbon dioxide
  • room temperature