Login / Signup

Deep Learning-based Reconstruction for Lower-Dose Pediatric CT: Technical Principles, Image Characteristics, and Clinical Implementations.

Yasunori NagayamaDaisuke SakabeMakoto GotoTakafumi EmotoSeitaro OdaTakeshi NakauraMasafumi KidohHiroyuki UetaniYoshinori FunamaToshinori Hirai
Published in: Radiographics : a review publication of the Radiological Society of North America, Inc (2021)
Optimizing the CT acquisition parameters to obtain diagnostic image quality at the lowest possible radiation dose is crucial in the radiosensitive pediatric population. The image quality of low-dose CT can be severely degraded by increased image noise with filtered back projection (FBP) reconstruction. Iterative reconstruction (IR) techniques partially resolve the trade-off relationship between noise and radiation dose but still suffer from degraded noise texture and low-contrast detectability at considerably low-dose settings. Furthermore, sophisticated model-based IR usually requires a long reconstruction time, which restricts its clinical usability. With recent advances in artificial intelligence technology, deep learning-based reconstruction (DLR) has been introduced to overcome the limitations of the FBP and IR approaches and is currently available clinically. DLR incorporates convolutional neural networks-which comprise multiple layers of mathematical equations-into the image reconstruction process to reduce image noise, improve spatial resolution, and preserve preferable noise texture in the CT images. For DLR development, numerous network parameters are iteratively optimized through an extensive learning process to discriminate true attenuation from noise by using low-dose training and high-dose teaching image data. After rigorous validations of network generalizability, the DLR engine can be used to generate high-quality images from low-dose projection data in a short reconstruction time in a clinical environment. Application of the DLR technique allows substantial dose reduction in pediatric CT performed for various clinical indications while preserving the diagnostic image quality. The authors present an overview of the basic concept, technical principles, and image characteristics of DLR and its clinical feasibility for low-dose pediatric CT. ©RSNA, 2021.
Keyphrases