Login / Signup

IGF-1 infusion increases growth in fetal sheep when euinsulinemia is maintained.

Jane E StremmingEileen I ChangAlicia WhitePaul J RozanceLaura D Brown
Published in: The Journal of endocrinology (2024)
Insulin-like growth factor 1 (IGF-1) is a critical fetal anabolic hormone. IGF-1 infusion to the normally growing sheep fetus increases the weight of some organs but does not consistently increase body weight. However, IGF-1 infusion profoundly decreases fetal plasma insulin concentrations, which may limit fetal growth potential. In this study, normally growing late-gestation fetal sheep received an intravenous infusion of either: IGF-1 (IGF), IGF-1 with insulin and dextrose to maintain fetal euinsulinemia and euglycemia (IGF+INS), or vehicle control (CON) for 1 week. The fetus underwent a metabolic study immediately prior to infusion start and after 1 week of the infusion to measure uterine and umbilical uptake rates of nutrients and oxygen. IGF+INS fetuses were 23% heavier than CON (P = 0.0081) and had heavier heart, liver, and adrenal glands than IGF and CON (P < 0.01). By design, final fetal insulin concentrations in IGF were 62% and 65% lower than IGF+INS and CON, respectively. Final glucose concentrations were similar in all groups. IGF+INS had lower final oxygen content than IGF and CON (P < 0.0001) and lower final amino acid concentrations than CON (P = 0.0002). Final umbilical oxygen uptake was higher in IGF+INS compared to IGF and CON (P < 0.05). Final umbilical uptake of several essential amino acids was higher in IGF+INS compared to CON (P < 0.05). In summary, maintaining euinsulinemia and euglycemia during fetal IGF-1 infusion is necessary to maximally support body growth. We speculate that IGF-1 and insulin stimulate placental nutrient transport to support fetal growth.
Keyphrases
  • pi k akt
  • growth hormone
  • binding protein
  • type diabetes
  • amino acid
  • body weight
  • heart failure
  • clinical trial
  • body mass index
  • insulin resistance
  • blood glucose
  • weight gain