Early Isolates of SARS-CoV-2 Result in Different Pathogenesis in the Transduced Mouse Model of COVID-19.
Sophie J SmitherSarah KempsterSimon Lawrence PriestnallAlejandro Suarez-BonnetHelen StapletonThomas R LawsDeborah FergusonNeil AlmondMark S LeverEthel Diane WilliamsonPublished in: Viruses (2022)
A transduced mouse model of SARS-CoV-2 infection was established using Balb/c mice. This was achieved through the adenovirus-vectored delivery of the hACE2 gene, to render the mice transiently susceptible to the virus. The model was characterised in terms of the dissemination of hACE2 receptor expression, the dissemination of three SARS-CoV-2 virus variants in vivo up to 10 days following challenge, the resulting histopathology and the clinical signs induced in the mice. In transduced mice, the infection was short-term, with a rapid loss in body weight starting at day 2 with maximum weight loss at day 4, followed by subsequent recovery until day 10. The induced expression of the hACE2 receptor was evident in the lungs, but, upon challenge, the SARS-CoV-2 virus disseminated beyond the lungs to spleen, liver and kidney, peaking at day 2 post infection. However, by day 10 post infection, the virus was undetectable. The lung histopathology was characterised by bronchial and alveolar inflammation, which was still present at day 10 post infection. Transduced mice had differential responses to viral variants ranking CVR-Glasgow 1 > Victoria-1 > England-2 isolates in terms of body weight loss. The transduced mouse model provides a consistent and manipulatable model of SARS-CoV-2 infection to screen viral variants for their relative virulence and possible interventions.