Spatial and temporal variation of dissolved heavy metals in the Lijiang River, China: implication of rainstorm on drinking water quality.
Liming DengAsfandyar ShahabHe XiaoJieyue LiSaeed RadJinping Jiangnull GuoYuPingping JiangHongwei HuangXiangkui LiBilal AhmadJamil SiddiquePublished in: Environmental science and pollution research international (2021)
Lijiang River is an essential drinking water source and natural scenery in the Guilin City. For the first time, implications of rainstorm were taken into consideration by investigating spatial and temporal variation of dissolved heavy metals (HMs) in the Lijiang River water. A total of 68 water samples were collected during low flow (normal) season and high flow (rainstorm) season from 34 sampling sites. Dissolved HMs including Cr, Mn, Co, Cu, Zn, As, Cd, Sb, and Pb were found to meet the respective drinking water standards, while comparatively higher concentration was observed after the rainstorm season, except for Cr. Multivariate statistical analysis showed that Co, Cu, Cr, Zn, Sb, and Pb in normal season were mainly controlled by anthropogenic sources. Furthermore, higher concentrations of Mn, Cu, Cd, Pb, Co, and Zn during the high flow season were attributed to rainstorm. The water quality index (WQI) showed good grades and comparatively lower in rainstorm season. The results of health risk assessment revealed that HMs in Lijiang River posed limited health risk; however, As posed potential health risk specially in rainstorm season. It is suggested to adopt preventive measures for mining activities and industrial waste-water discharge at the river's upstream and downstream.