The S. pombe adaptor protein Bbc1 regulates localization of Wsp1 and Vrp1 during endocytic actin patch assembly.
Cameron Dale MacQuarrieMariaSanta C MangioneRobert CarrollMichael JamesKathleen L GouldVladimir SirotkinPublished in: Journal of cell science (2019)
Arp2/3 complex-nucleated branched actin networks provide the key force necessary for endocytosis. The Arp2/3 complex is activated by nucleation-promoting factors including the Schizosaccharomyces pombe Wiskott-Aldrich syndrome protein (Wsp1) and myosin-1 (Myo1). There are >40 known yeast endocytic proteins with distinct spatial and temporal localizations and functions; however, it is still unclear how these proteins work together to drive endocytosis. Here, we used quantitative live-cell imaging to determine the function of the uncharacterized S. pombe protein Bbc1. We discovered that Myo1 interacts with and recruits Bbc1 to sites of endocytosis. Bbc1 competes with the verprolin Vrp1 for localization to patches and association with Myo1, thus releasing Vrp1 and its binding partner Wsp1 from Myo1. Normally Myo1 remains at the base of the endocytic invagination and Vrp1-Wsp1 internalizes with the endocytic vesicle. However, in the absence of Bbc1, a portion of Vrp1-Wsp1 remains with Myo1 at the base of the invagination, and endocytic structures internalize twice as far. We propose that Bbc1 disrupts a transient interaction of Myo1 with Vrp1 and Wsp1 and thereby limits Arp2/3 complex-mediated nucleation of actin branches at the plasma membrane.This article has an associated First Person interview with the first author of the paper.