Login / Signup

Biphenyls and dibenzofurans of the rosaceous subtribe Malinae and their role as phytoalexins.

Belnaser A BusnenaLudger BeerhuesBenye Liu
Published in: Planta (2023)
Biphenyl and dibenzofuran phytoalexins are differentially distributed among species of the rosaceous subtribe Malinae, which includes apple and pear, and exhibit varying inhibitory activity against phytopathogenic microorganisms. Biphenyls and dibenzofurans are specialized metabolites, which are formed in species of the rosaceous subtribe Malinae upon elicitation by biotic and abiotic inducers. The subtribe Malinae (previously Pyrinae) comprises approximately 1000 species, which include economically important fruit trees such as apple and pear. The present review summarizes the current status of knowledge of biphenyls and dibenzofurans in the Malinae, mainly focusing on their role as phytoalexins. To date, 46 biphenyls and 41 dibenzofurans have been detected in 44 Malinae species. Structurally, 54 simple molecules, 23 glycosidic compounds and 10 miscellaneous structures were identified. Functionally, 21 biphenyls and 21 dibenzofurans were demonstrated to be phytoalexins. Furthermore, their distribution in species of the Malinae, inhibitory activities against phytopathogens, and structure-activity relationships were studied. The most widely distributed phytoalexins of the Malinae are the three biphenyls aucuparin (3), 2'-methoxyaucuparin (7), and 4'-methoxyaucuparin (9) and the three dibenzofurans α-cotonefuran (47), γ-cotonefuran (49), and eriobofuran (53). The formation of biphenyl and dibenzofuran phytoalexins appears to be an essential defense weapon of the Malinae against various stresses. Manipulating phytoalexin formation may enhance the disease resistance in economically important fruit trees. However, this approach requires an extensive understanding of how the compounds are formed. Although the biosynthesis of biphenyls was partially elucidated, formation of dibenzofurans remains largely unclear. Thus, further efforts have to be made to gain deeper insight into the distribution, function, and metabolism of biphenyls and dibenzofurans in the Malinae.
Keyphrases
  • polycyclic aromatic hydrocarbons
  • current status
  • healthcare
  • genetic diversity
  • palliative care
  • ms ms
  • mass spectrometry