Generation of Perfect Electron Vortex Beam with a Customized Beam Size Independent of Orbital Angular Momentum.
Ruixuan YuPengcheng HuoMingze LiuWenqi ZhuAmit AgrawalYan-Qing LuTing XuPublished in: Nano letters (2023)
The electron vortex beam (EVB)-carrying quantized orbital angular momentum (OAM) plays an essential role in a series of fundamental research. However, the radius of the transverse intensity profile of a doughnut-shaped EVB strongly depends on the topological charge of the OAM, impeding its wide applications in electron microscopy. Inspired by the perfect vortex in optics, herein, we demonstrate a perfect electron vortex beam (PEVB), which completely unlocks the constraint between the beam size and the beam's OAM. We design nanoscale holograms to generate PEVBs carrying different quanta of OAM but exhibiting almost the same beam size. Furthermore, we show that the beam size of the PEVB can be readily controlled by only modifying the design parameters of the hologram. The generation of PEVB with a customized beam size independent of the OAM can promote various in situ applications of free electrons carrying OAM in electron microscopy.