Impact of global value chain and technological innovation on China's industrial greenhouse gas emissions and trend prediction.
Yang YuJ SuY DuPublished in: International journal of environmental science and technology : IJEST (2023)
The global value chain has introduced profound changes in international trade, economic development, and technology progress as well as greenhouse gas emissions worldwide. This paper investigated the impact of the global value chain and technological innovation on greenhouse gas emissions by introducing a partially linear functional-coefficient model based on panel data of 15 industrial sectors in China from 2000 to 2020. Moreover, the greenhouse gas emission trends of China's industrial sectors from 2024 to 2035 were predicted using the autoregressive integrated moving average model. The results showed that (1) Greenhouse gas emissions were affected negatively by global value chain position and independent innovation. Nevertheless, foreign innovation had the opposite effect. (2) The results of the partially linear functional-coefficient model implied that the inhibitory effect of independent innovation on GHG emissions decreased with an improvement in the global value chain position. (3) The positive effect of foreign innovation on greenhouse gas emissions increased and then, decreased as the global value chain position improved. (4) The prediction results indicated that greenhouse gas emissions will continue on an upward trend from 2024 to 2035, while industrial carbon dioxide emissions should peak at 10.21 Gt in 2028. This carbon-peaking goal would be achieved in China's industrial sector by actively improving the global value chain position. Addressing these issues will enable China to take full advantage of the development opportunities of participating in the global value chain.