Microstructures and mechanical properties of in situ TiC-β-Ti-Nb composites with ultrafine grains fabricated by high-pressure sintering.
Z LiuD C ZhangL J GongJ G LinCuie WenPublished in: Scientific reports (2018)
In this study, an in situ β-Ti-Nb composites reinforced with TiC particles with an ultrafine grain size were fabricated using a powder metallurgical (PM) method. The microstructures and mechanical properties of the composites were characterized using X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and compression tests. TiC particles were formed in the ball-milled powders after annealing at 600 °C due to a chemical reaction between stearic acid and titanium. Using high-pressure sintering (HPS) on an apparatus with six tungsten carbide anvils, a fully dense β-Ti-Nb composite reinforced with fine in situ TiC particles was obtained. The TiC particles exhibit particle sizes of ~500 nm, uniformly distributed in the composite matrix, which had grain sizes of ~600 nm. Thus, the TiC-β-Ti-Nb composite show very high compression yield strength and relatively high plasticity contributed by grain refinement and TiC particles strengthening. The composite with 45 vol.% TiC exhibited excellent mechanical properties, with a yield compressive strength of 1990 MPa and plastic strain of 9.12%. More over, a modified rule-of-mixture (ROM) was presented to describe the combined strengthening effect of grain refinement and TiC particles.