Login / Signup

Cerebellar control of a unitary head direction sense.

Mehdi FallahnezhadJulia Le MeroXhensjana ZenelajJean VincentChristelle RochefortLaure Rondi-Reig
Published in: Proceedings of the National Academy of Sciences of the United States of America (2023)
The head-direction (HD) system, a key neural circuit for navigation, consists of several anatomical structures containing neurons selective to the animal's head direction. HD cells exhibit ubiquitous temporal coordination across brain regions, independently of the animal's behavioral state or sensory inputs. Such temporal coordination mediates a single, stable, and persistent HD signal, which is essential for intact orientation. However, the mechanistic processes behind the temporal organization of HD cells are unknown. By manipulating the cerebellum, we identify pairs of HD cells recorded from two brain structures (anterodorsal thalamus and retrosplenial cortex) that lose their temporal coordination, specifically during the removal of the external sensory inputs. Further, we identify distinct cerebellar mechanisms that participate in the spatial stability of the HD signal depending on sensory signals. We show that while cerebellar protein phosphatase 2B-dependent mechanisms facilitate the anchoring of the HD signal on the external cues, the cerebellar protein kinase C-dependent mechanisms are required for the stability of the HD signal by self-motion cues. These results indicate that the cerebellum contributes to the preservation of a single and stable sense of direction.
Keyphrases