Hydrothermal grain pre-processing and ultra-fine milling for the production of durum wheat flour fractions with high nutritional value.
Roberto CiccorittiGiovanna TerraccianoAlessandro CammerataDaniela SgrullettaViviana Del FrateLaura GazzaFrancesca NocentePublished in: Food science and technology international = Ciencia y tecnologia de los alimentos internacional (2017)
This work describes a process for producing durum wheat flour fractions with high potential nutritional value using grain pre-milling hydrothermal treatment and ultra-fine grinding (micronization), coupled with air classification. The difference of bioactive value of the flour fractions in relation to dietary fibre and phenolic compounds was monitored on four durum wheat cultivars by analysing total arabinoxylans, water extractable arabinoxylans and 5- n-alkylresorcinols. The extractability of the analysed compounds was most significantly affected by hydrothermal treatment. On average, the hydrothermally treated kernels compared with the untreated ones presented a marked increase of water extractable arabinoxylans and alkylresorcinols (about 25 and 48%, respectively), whereas slightly lower total arabinoxylans content (about 9%) was detected. The air classification applied on micronized kernels produced two flour fractions, coarse and fine, with the last showing, irrespective of the hydrothermal treatment, an increment of alkylresorcinols (24 and 22% in untreated and treated samples) and of total arabinoxylans (13 and 20% in untreated and treated samples) in comparison with the coarse one. The fine fraction (particles ≤ 120 µm), resulting richer in bioactive compounds, provides an interesting raw material to enrich traditional semolina in which, due to the removal of the external layers, the losses of total arabinoxylans and of alkylresorcinols were more than 60 and 90% alkylresorcinols, respectively, if compared with whole wheat grain.