Login / Signup

Molecular Characterization of a Recombinant Isolate of Tomato Leaf Curl New Delhi Virus Associated with Severe Outbreaks in Zucchini Squash in Southern Italy.

Mariarosaria MastrochiricoRoberta SpanòRita Milvia De Miccolis AngeliniTiziana Mascia
Published in: Plants (Basel, Switzerland) (2023)
The molecular characterization of a tomato leaf curl New Delhi virus (ToLCNDV) isolate, denoted ToLCNDV-Le, is reported. The virus was associated with severe and recurrent outbreaks in protected crops of zucchini squash grown in the Province of Lecce (Apulia, southern Italy). The fully sequenced genome of ToLCNDV-Le consists of two genomic components named DNA-A and DNA-B of 2738 and 2683 nt in size, respectively. Like other ToLCNDV isolates, ToLCNDV-Le DNA-A contains the AV2 and AV1 open reading frames (ORFs) in the virion-sense orientation and five additional ORFs named AC1, AC2, AC3, AC4 and AC5 in the complementary-sense orientation. The DNA-B contains BV1 ORF in the virion-sense orientation and BC1 ORF in the complementary-sense orientation. No DNA betasatellites were found associated with ToLCNDV-Le in naturally infected samples. Phylogenetic analysis clustered ToLCNDV-Le with the ToLCNDV-ES strain of western Mediterranean Basin isolates. Consequently, the ToLCNDV-ES-[IT-Zu-Le18] name is proposed as the descriptor for ToLCNDV-Le. Using recombination detection program RDP4, one putative recombination breakpoint (Rbp) was identified close to nucleotide positions 2197-2727, covering approximately half of the AC1 region, including the AC4 ORF and the 3' UTR. RDP4 indicated the event represents an Rbp of an isolate similar to ToLCNDV [Pk-06] (Acc. No. EF620534) found in Luffa acutangula in Pakistan and identified as putative minor parent into the background of ToLCNDV [BG-Jes-Svr-05] (Acc. No. AJ875157), found in tomato in Bangladesh, and identified as putative major parent. To the best of our knowledge, this is the first report of a ToLCNDV-ES recombinant isolate in the AC1-AC4 region in Italy.
Keyphrases
  • cell free
  • circulating tumor
  • single molecule
  • south africa
  • dna damage
  • early onset
  • dna repair
  • gene expression
  • inflammatory response
  • climate change
  • circulating tumor cells