Login / Signup

Highly Efficient Ir(III)-Coumarin Photo-Redox Catalyst for Synergetic Multi-Mode Cancer Photo-Therapy.

Zhongxian FanJiaen XieTumpa SadhukhanChao LiangCan HuangWenqing LiTingxuan LiPingyu ZhangSamya BanerjeeKrishnan RaghavachariHuaiyi Huang
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2021)
Four photo-catalysts of the general formula [Ir(CO6/ppy)2 (L)]Cl where CO6=coumarin 6 (Ir1-Ir3), ppy=2-phenylpyridine (Ir4), L=4'-(3,5-di-tert-butylphenyl)-2,2' : 6',2''-terpyridine (Ir1), 4'-(3,5-bis(trifluoromethyl)phenyl)-2,2' : 6',2''-terpyridine (Ir2 and Ir4), and 4-([2,2' : 6',2''-terpyridin]-4'-yl)-N,N-dimethylaniline (Ir3) were synthesized and characterized. These photostable photo-catalysts (Ir1-Ir3) showed strong visible light absorption between 400-550 nm. Upon light irradiation (465 and 525 nm), Ir1-Ir3 generated singlet oxygen and induced rapidly photo-catalytic oxidation of cellular coenzymes NAD(P)H. Ir1-Ir3 showed time-dependent cellular uptake with excellent intracellular retention efficiency. Upon green light irradiation (525 nm), Ir2 provided a much higher photo-index (PI=793) than the clinically used photosensitizer, 5-aminolevulinicacid (5-ALA, PI>30) against HeLa cancer cells. The observed necro-apoptotic anticancer activity of Ir2 was due to the Ir2 triggered photo-induced intracellular redox imbalance (by NAD(P)H oxidation and ROS generation) and change in the mitochondrial membrane potential. Remarkably, Ir2 showed in vivo photo-induced catalytic anticancer activity in mouse models.
Keyphrases