Fabrication of novel-shaped microneedles to overcome the disadvantages of solid microneedles for the transdermal delivery of insulin.
Yuki MizunoKanae TakasawaTaichi HanadaKyou NakamuraKazuya YamadaHirotada TsubakiMasaya HaraYasunori TashiroMasaaki MatsuoTakahiro ItoTomohiro HikimaPublished in: Biomedical microdevices (2021)
In this study, we fabricated two different microneedles (MNs) - semi-hollow and bird-bill - to overcome the limitations of solid and coated MNs, respectively. The two MN arrays were developed using a general injection molding process to obtain high-quality MNs with uniform shape. The semi-hollow and bird-bill MNs could penetrate the micropores of swine skin up to depths of 178.5 ± 27.6 µm and 232.1 ± 51.3 µm, respectively. When the semi-hollow MNs were used for the transdermal delivery of insulin in diabetic rats, it was observed that the blood glucose concentration (BGC) decreased remarkably within 30 min, and the desired effect of insulin was maintained for an additional 3 h after the removal of insulin from the skin surface. The bird-bill MN was able to load a coating gel at a maximum capacity of 3.20 ± 0.21 mg per MN array, and the BGC continued to decrease significantly after MN application for up to 2-6 h. In summary, we fabricated semi-hollow and bird-bill MN arrays using the injection molding method; these can be mass produced and are capable of effectively producing micro-holes in the stratum corneum. The two MN arrays could provide effective transdermal delivery of large-molecular-weight drugs such as insulin.
Keyphrases