Evaluation of the Progression of Periodontitis with the Use of Neural Networks.
Agata OssowskaAida KusiakDariusz ŚwietlikPublished in: Journal of clinical medicine (2022)
Periodontitis is an inflammatory disease of the tissues surrounding the tooth that results in loss of periodontal attachment detected as clinical attachment loss (CAL). The mildest form of periodontal disease is gingivitis, which is a necessary condition for periodontitis development. We can distinguish also some modifying factors which have an influence on the rate of development of periodontitis from which the most important are smoking and poorly controlled diabetes. According to the new classification from 2017, we can identify four stages of periodontitis and three grades of periodontitis. Grades tell us about the periodontitis progression risk and may be helpful in treatment planning and motivating the patients. Artificial neural networks (ANN) are widely used in medicine and in dentistry as an additional tool to support clinicians in their work. In this paper, ANN was used to assess grades of periodontitis in the group of patients. Gender, age, nicotinism approximal plaque index (API), bleeding on probing (BoP), clinical attachment loss (CAL), and pocket depth (PD) were taken into consideration. There were no statistically significant differences in the clinical periodontal assessment in relation to the neural network assessment. Based on the definition of the sensitivity and specificity in medicine we obtained 85.7% and 80.0% as a correctly diagnosed and excluded disease, respectively. The quality of the neural network, defined as the percentage of correctly classified patients according to the grade of periodontitis was 84.2% for the training set. The percentage of incorrectly classified patients according to the grade of periodontitis was 15.8%. Artificial neural networks may be useful tool in everyday dental practice to assess the risk of periodontitis development however more studies are needed.
Keyphrases
- neural network
- end stage renal disease
- ejection fraction
- newly diagnosed
- chronic kidney disease
- gene expression
- type diabetes
- healthcare
- peritoneal dialysis
- cardiovascular disease
- mental health
- prognostic factors
- metabolic syndrome
- oxidative stress
- adipose tissue
- palliative care
- atrial fibrillation
- coronary artery disease
- deep learning
- quality improvement