Leather-Promoted Transformation of Glucose into 5-Hydroxymethylfurfural and Levoglucosenone.
Felix D BobbinkZhangjun HuangFlorent MenoudPaul J DysonPublished in: ChemSusChem (2019)
The search for efficient catalysts frequently leads to new homogeneous and heterogeneous catalysts of increasing complexity, and sometimes common, natural, or hybrid natural/synthetic materials that could be used in catalysis are overlooked. For example, the leather industry has produced robust Cr-containing materials for centuries by chemical treatment of animal hides with chromium salts. Herein, the use of chromium-tanned leather as a heterogeneous catalyst for glucose dehydration to 5-hydroxymethylfurfural (5-HMF) and levoglucosenone (LGO) is reported. Four pieces of waste leather were obtained from shoe soles and a belt, characterized by a range of techniques including FTIR spectroscopy, SEM, BET surface area measurements, XRD, and X-ray photoelectron spectroscopy, and their catalytic activity was evaluated. The activity of the scrap leather pieces compares favorably to those of many recently reported catalysts for the preparation of 5-HMF, but additionally results in significant quantities of LGO. Overall, the results demonstrate that waste leather is an outstanding material for use in catalysis.