Non-Globular Organic Ionic Plastic Crystal Containing a Crown-Ether Moiety - Tuning Its Behaviour Using Sodium Salts.
Anna CasimiroJody A M LuggerJohan LubKitty NijmeijerPublished in: Chemphyschem : a European journal of chemical physics and physical chemistry (2022)
Organic ionic plastic crystals (OIPCs) are a class of soft materials showing positional order while still allowing orientational freedom. Due to their motional freedom in the solid state, they possess plasticity, non-flammability and high ionic conductivity. OIPC behavior is typically exhibited by 'simple' globular molecules allowing molecular rotation, whereas the interactions that govern the formation of OIPC phases in complex non-globular molecules are less understood. To better understand these interactions, a new family of non-globular OIPCs containing a 15-crown-5 ether moiety was synthetized and characterized. The 15C5BA molecule prepared does not exhibit the sought-after behavior because of its non-globular nature and strong intermolecular H-bonds that restrict orientational motion. However, the OIPC behavior was successfully obtained through complexation of the crown-ether moiety with sodium salts containing chaotropic anions. Those anions weaken the interactions between the molecules, allowing rotational freedom and tuning of the thermal and morphological properties of the OIPC.