Synthesis of Chromium(II) Complexes with Chelating Bis(alkoxide) Ligand and Their Reactions with Organoazides and Diazoalkanes.
Sudheer S KurupRichard J StaplesRichard L LordStanislav GroysmanPublished in: Molecules (Basel, Switzerland) (2020)
Synthesis of new chromium(II) complexes with chelating bis(alkoxide) ligand [OO]Ph (H2[OO]Ph = [1,1':4',1''-terphenyl]-2,2''-diylbis(diphenylmethanol)) and their subsequent reactivity in the context of catalytic production of carbodiimides from azides and isocyanides are described. Two different Cr(II) complexes are obtained, as a function of the crystallization solvent: mononuclear Cr[OO]Ph(THF)2 (in toluene/THF, THF = tetrahydrofuran) and dinuclear Cr2([OO]Ph)2 (in CH2Cl2/THF). The electronic structure and bonding in Cr[OO]Ph(THF)2 were probed by density functional theory calculations. Isolated Cr2([OO]Ph)2 undergoes facile reaction with 4-MeC6H4N3, 4-MeOC6H4N3, or 3,5-Me2C6H3N3 to yield diamagnetic Cr(VI) bis(imido) complexes; a structure of Cr[OO]Ph(N(4-MeC6H4))2 was confirmed by X-ray crystallography. The reaction of Cr2([OO]Ph)2 with bulkier azides N3R (MesN3, AdN3) forms paramagnetic products, formulated as Cr[OO]Ph(NR). The attempted formation of a Cr-alkylidene complex (using N2CPh2) instead forms chromium(VI) bis(diphenylmethylenehydrazido) complex Cr[OO]Ph(NNCPh2)2. Catalytic formation of carbodiimides was investigated for the azide/isocyanide mixtures containing various aryl azides and isocyanides. The formation of carbodiimides was found to depend on the nature of organoazide: whereas bulky mesitylazide led to the formation of carbodiimides with all isocyanides, no carbodiimide formation was observed for 3,5-dimethylphenylazide or 4-methylphenylazide. Treatment of Cr2([OO]Ph)2 or H2[OO]Ph with NO+ leads to the formation of [1,2-b]-dihydroindenofluorene, likely obtained via carbocation-mediated cyclization of the ligand.