Polyhexamethylene guanidine hydrochloride as promising active ingredient for oral antiseptic products to eliminate microorganisms threatening the health of endangered wild cats: a comparative study with chlorhexidine digluconate.
Renata Alves de BarrosMarcela Aldrovani RodriguesSérgio Ricardo AmbrósioRodrigo Cassio Sola VenezianiDaniel Paulino JúniorRenato Luis Tame ParreiraMaria Anita Lemos Vasconcelos AmbrósioThayná de Souza SilvaLucas de Freitas PereiraMessias Gonçalves PessinatoVinícius José da Silva Cardoso de BritoCésar Henrique BrancoFernanda Gosuen Gonçalves DiasPublished in: Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] (2023)
The aim of this study was to evaluate the antimicrobial efficacy of polyhexamethylene hydrochloride guanidine (PHMGH) compared to chlorhexidine digluconate (CLX) for use as an oral antiseptic during dental procedures in wild cats. This research is crucial due to limited information on the diversity of oral microorganisms in wild cats and the detrimental local and systemic effects of oral diseases, which highlights the importance of improving prevention and treatment strategies. Samples were collected from the oral cavities of four Puma concolor, one Panthera onca, and one Panthera leo, and the number of colony-forming units per milliliter (CFU/mL) was counted and semi-automatically identified. The antimicrobial susceptibility profile of bacterial isolates was determined using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-kill kinetics of PHMGH and CLX. A total of 16 bacterial isolates were identified, consisting of six Gram-positive and 10 Gram-negative. PHMGH displayed MIC and MBC from 0.24 to 125.00 μg/mL, lower than those of CLX against three isolates. Time-kill kinetics showed that PHMGH reduced the microbial load by over 90% for all microorganisms within 30 min, whereas CLX did not. Only two Gram-positive isolates exposed to the polymer showed incomplete elimination after 60 min of contact. The results could aid in the development of effective prevention and treatment strategies for oral diseases in large felids. PHMGH showed promising potential at low concentrations and short contact times compared to the commercial product CLX, making it a possible active ingredient in oral antiseptic products for veterinary use in the future.