Highly Reversible and Rapid Sodium Storage in GeP3 with Synergistic Effect from Outside-In Optimization.
Ting WangKai ZhangMihui ParkVincent Wing-Hei LauHaihua WangJiliang ZhangJing ZhangRuirui ZhaoYamauchi YusukeYong-Mook KangPublished in: ACS nano (2020)
The composite GeP3/C@rGO as a sodium ion battery anode material was fabricated by introducing a carbon matrix into GeP3 through high-energy ball milling, followed by encapsulating the resultant composite with graphene via a solution-based ultrasonic method. To delineate the individual role of carbon matrix and graphene, material characterization and electrochemical analyses were performed for GeP3/C@rGO and three other samples: bare GeP3, GeP3 with graphene coating (GeP3@rGO), and GeP3 with carbon matrix (GeP3/C). GeP3/C@rGO exhibits the highest electric conductivity (5.89 × 10-1 S cm-1) and the largest surface area (167.85 m2 g-1) among the four samples. The as-prepared GeP3/C@rGO delivered a reversible high capacity of 1084 mA h g-1 at 50 mA g-1, excellent rate capacity (435.4 mA h g-1 at a high rate of 5 A g-1), and long-term cycling stability (400 cycles with a reversible capacity of 823.3 mA h g-1 at 0.2 A g-1), all of which outperform the other three samples. The kinetics investigation reveals a "pseudocapacitive behavior" in GeP3/C and GeP3/C@rGO, where solely faradic reactions took place in bare GeP3 and GeP3@rGO with a typical "battery behavior". Based on ex-situ X-ray photoelectron spectroscopy and ex-situ electrochemical impedance spectroscopy, the carbon matrix serves to activate and stabilize the interior of the composite, while the graphene protects and restrains the exterior surface. Benefiting from the synergistic combination of these two components, GeP3/C@rGO achieved extremely stable cycling stability as well as outstanding rate performance.