Thermal decomposition mechanisms of energetic CL-20-based co-crystals: quantum molecular dynamics simulations.
Li TangWeihua ZhuPublished in: Journal of molecular modeling (2022)
The decomposition mechanisms of energetic CL-20:2,4-dinitro-2,4-diazapentane (DNP) and CL-20:2,4-dinitro-2,4-diazaheptane (DNG) co-crystals at high temperatures (1000, 2000, and 3000 K) were studied by density functional tight-binding molecular dynamics (DFTB-MD) simulations. At different temperatures, their decomposition mechanisms are very different. At 1000 K, conformational changes are observed only for the CL-20:DNG co-crystal, in which the CL-20 changes from β-CL-20 to γ-CL-20. When the temperature is increased to 2000 K, CL-20, DNP, and DNG begin to decompose, and there are five paths for the main initial mechanisms. Further increasing the temperature to 3000 K promotes a more complete decomposition. The initial reactions of CL-20 in the two co-crystals have two channels. There are two initial decomposition channels in the DNP molecule and only one channel in the DNG molecule. As the temperature increases, the decomposition products of the two co-crystals are different. Our work may provide the in-depth understanding of the decomposition mechanisms of high-energy CL-20-based co-crystals at high temperatures.