Login / Signup

Fick-Jacobs description and first passage dynamics for diffusion in a channel under stochastic resetting.

Siddharth JainDenis BoyerArnab PalLeonardo Dagdug
Published in: The Journal of chemical physics (2023)
The transport of particles through channels is of paramount importance in physics, chemistry, and surface science due to its broad real world applications. Much insight can be gained by observing the transition paths of a particle through a channel and collecting statistics on the lifetimes in the channel or the escape probabilities from the channel. In this paper, we consider the diffusive transport through a narrow conical channel of a Brownian particle subject to intermittent dynamics, namely, stochastic resetting. As such, resetting brings the particle back to a desired location from where it resumes its diffusive phase. To this end, we extend the Fick-Jacobs theory of channel-facilitated diffusive transport to resetting-induced transport. Exact expressions for the conditional mean first passage times, escape probabilities, and the total average lifetime in the channel are obtained, and their behavior as a function of the resetting rate is highlighted. It is shown that resetting can expedite the transport through the channel-rigorous constraints for such conditions are then illustrated. Furthermore, we observe that a carefully chosen resetting rate can render the average lifetime of the particle inside the channel minimal. Interestingly, the optimal rate undergoes continuous and discontinuous transitions as some relevant system parameters are varied. The validity of our one-dimensional analysis and the corresponding theoretical predictions is supported by three-dimensional Brownian dynamics simulations. We thus believe that resetting can be useful to facilitate particle transport across biological membranes-a phenomenon that can spearhead further theoretical and experimental studies.
Keyphrases
  • public health
  • oxidative stress
  • diabetic rats
  • finite element