FeCoNiMnCr High-Entropy Alloy Nanoparticle-Grafted NCNTs with Promising Performance in the Ohmic Polarization Region of Fuel Cells.
Ravi NandanGokul RajKaruna Kar NandaPublished in: ACS applied materials & interfaces (2022)
We report a user-friendly methodology for the successful designing of targeted single-phased face-centered cubic (fcc) FeCoNiMnCr high-entropy alloy (HEA) nanoparticle-grafted N-doped carbon nanotubes (CNTs). The nanostructure assimilates the advantages of N-doped carbon and HEA nanoparticles as a core for the efficient promotion of electrochemical oxygen reduction reaction (ORR). It emulates the commercial Pt-C electrocatalyst for ORR and shows promise for better performance in the Ohmic polarization region of fuel cells. In addition, it ensures superior efficacy over those of numerous recently reported transition metal-based traditional alloy composites for ORR. The presented methodology has the potential to pave the way for the effective designing of a variety of targeted HEA systems with ease, which is necessary to widen the domain of HEA for numerous applications.