Login / Signup

Lithium Titanate Matrix-Supported Nanocrystalline Silicon Film as an Anode for Lithium-Ion Batteries.

Zhaozhe YuBingbing TianYing LiDianyuan FanDaoguo YangGuisheng ZhuMiao CaiDong Liang Yan
Published in: ACS applied materials & interfaces (2018)
A facile preparation method of a Si-based anode with excellent cycling property is urgently required in the process of preparing lithium-ion batteries (LIBs). Here, lithium titanate (LTO) matrix-supported nanocrystalline Si film is prepared by radio frequency (RF) magnetron cosputtering utilizing LTO and silicon (Si) targets as the sputtering source. LTO-supported nanocrystalline Si film electrodes revealed a repeatable specific capacity of 1200 mA h g-1 at 150 mA g-1 with a maintenance of more than 75% even after 800 cycles. The remarkable electrochemical properties of the LTO-Si composite films could be attributed to the LTO matrix, preventing the electrolyte from directly making contact with the nanocrystalline Si materials, alleviating the stress of the periodic volume change and further providing efficient and rapid pathways for lithium-ion transport. The results suggest that Si-based LTO composite films are prospective anodes for LIBs, with high capacities and long cycling stabilities.
Keyphrases
  • room temperature
  • reduced graphene oxide
  • ionic liquid
  • ion batteries
  • solid state
  • gold nanoparticles
  • high intensity
  • single cell
  • mass spectrometry
  • molecularly imprinted
  • quantum dots
  • highly efficient
  • heat stress