Pressure Effect on Electronic and Excitonic Properties of Purely J-Aggregated Monolayer Organic Semiconductor.
Ruiping LiMeng WangHuijuan ZhaoZheng BianXiaomu WangYingchun ChengWei HuangPublished in: The journal of physical chemistry letters (2020)
Different from monolayer inorganic semiconductors, such as transition metal dichalcogenides, monolayer organic semiconductors derived from perylene have attracted much attention because of their strong absorption and bright photoluminescence (PL). Pressure has proved to be an effective tool in probing the exciton behavior in monolayer semiconductors. Here, by studying the high-pressure behavior of purely J-aggregated monolayer organic semiconductors experimentally and theoretically, we find a red shift of PL spectra due to a decrease of band gap, which is consistent with fluorescent images taken under pressure. The PL center dominates the perylene group and the band edges are flat, indicating Frenkel exciton in the monolayer organic semiconductor under ambient conditions. With increasing pressure, the band edges become more dispersive, suggesting the exciton transform to Wannier-Mott exciton, which is commonly observed in inorganic semiconductors.