Login / Signup

Multi-context blind source separation by error-gated Hebbian rule.

Takuya IsomuraTaro Toyoizumi
Published in: Scientific reports (2019)
Animals need to adjust their inferences according to the context they are in. This is required for the multi-context blind source separation (BSS) task, where an agent needs to infer hidden sources from their context-dependent mixtures. The agent is expected to invert this mixing process for all contexts. Here, we show that a neural network that implements the error-gated Hebbian rule (EGHR) with sufficiently redundant sensory inputs can successfully learn this task. After training, the network can perform the multi-context BSS without further updating synapses, by retaining memories of all experienced contexts. This demonstrates an attractive use of the EGHR for dimensionality reduction by extracting low-dimensional sources across contexts. Finally, if there is a common feature shared across contexts, the EGHR can extract it and generalize the task to even inexperienced contexts. The results highlight the utility of the EGHR as a model for perceptual adaptation in animals.
Keyphrases
  • neural network
  • working memory
  • drinking water
  • machine learning
  • liquid chromatography
  • deep learning
  • mass spectrometry