Login / Signup

Advanced materials for implantable neuroelectronics.

Yongli QiSeung-Kyun KangHui Fang
Published in: MRS bulletin (2023)
Materials innovation has arguably played one of the most important roles in the development of implantable neuroelectronics. Such technologies explore biocompatible working systems for reading, triggering, and manipulating neural signals for neuroscience research and provide the additional potential to develop devices for medical diagnostics and/or treatment. The past decade has witnessed a golden era in neuroelectronic materials research. For example, R&D on soft material-based devices have exploded and taken center stage for many applications, including both central and peripheral nerve interfaces. Recent developments have also witnessed the emergence of biodegradable and multifunctional devices. In this article, we aim to overview recent advances in implantable neuroelectronics with an emphasis on chronic biocompatibility, biodegradability, and multifunctionality. In addition to highlighting fundamental materials innovations, we also discuss important challenges and future opportunities.
Keyphrases
  • peripheral nerve
  • drug delivery
  • healthcare
  • drug release
  • climate change
  • metal organic framework