Login / Signup

Deep Learning on Histopathological Images for Colorectal Cancer Diagnosis: A Systematic Review.

Athena S DavriEffrosyni BirbasTheofilos KanavosGeorgios NtritsosNikolaos GiannakeasAlexandros T TzallasAnna Batistatou
Published in: Diagnostics (Basel, Switzerland) (2022)
Colorectal cancer (CRC) is the second most common cancer in women and the third most common in men, with an increasing incidence. Pathology diagnosis complemented with prognostic and predictive biomarker information is the first step for personalized treatment. The increased diagnostic load in the pathology laboratory, combined with the reported intra- and inter-variability in the assessment of biomarkers, has prompted the quest for reliable machine-based methods to be incorporated into the routine practice. Recently, Artificial Intelligence (AI) has made significant progress in the medical field, showing potential for clinical applications. Herein, we aim to systematically review the current research on AI in CRC image analysis. In histopathology, algorithms based on Deep Learning (DL) have the potential to assist in diagnosis, predict clinically relevant molecular phenotypes and microsatellite instability, identify histological features related to prognosis and correlated to metastasis, and assess the specific components of the tumor microenvironment.
Keyphrases