Parametric shift from rational to irrational decisions in mice.
Nathan Alan SchneiderBenjamin BallintynDonald KatzJohn E LismanHyun-Jae PiPublished in: Scientific reports (2021)
In the classical view of economic choices, subjects make rational decisions evaluating the costs and benefits of options in order to maximize their overall income. Nonetheless, subjects often fail to reach optimal outcomes. The overt value of an option drives the direction of decisions, but covert factors such as emotion and sensitivity to sunk cost are thought to drive the observed deviations from optimality. Many questions remain to be answered as to (1) which contexts contribute the most to deviation from an optimal solution; and (2) the extent of these effects. In order to tackle these questions, we devised a decision-making task for mice, in which cost and benefit parameters could be independently and flexibly adjusted and for which a tractable optimal solution was known. Comparing mouse behavior with this optimal solution across parameter settings revealed that the factor most strongly contributing to suboptimal performance was the cost parameter. The quantification of sensitivity to sunk cost, a covert factor implicated in our task design, revealed it as another contributor to reduced optimality. In one condition where the large reward option was particularly unattractive and the small reward cost was low, the sensitivity to sunk cost and the cost-led suboptimality almost vanished. In this regime and this regime only, mice could be viewed as close to rational (here, 'rational' refers to a state in which an animal makes decisions basing on objective valuation, not covert factors). Taken together, our results suggest that "rationality" is a task-specific construct even in mice.