Login / Signup

Deuteron Quadrupolar Chemical Exchange Saturation Transfer (Q-CEST) Solid-State NMR for Static Powder Samples: Approach and Applications to Amyloid-β Fibrils.

Liliya VugmeysterDmitry OstrovskyRiqiang Fu
Published in: Chemphyschem : a European journal of chemical physics and physical chemistry (2020)
We provide an experimental and computational framework for 2 H quadrupolar chemical exchange saturation transfer NMR experiments (Q-CEST) under static solid-state conditions for the quantification of dynamics on μs-ms timescales. Simulations using simple 2-site exchange models provide insights into the relation between spin dynamics and motions. Biological applications focus on two sites of amyloid-β fibrils in the 3-fold symmetric polymorph. The first site, the methyl group of A2 of the disordered N-terminal domain, undergoes diffusive motions and conformational exchange due to transient interactions. Earlier 2 H rotating frame relaxation and quadrupolar CPMG measurements are combined with the Q-CEST approach to characterize the multiple conformational states of the domain. The second site, the methyl group of M35, spans the water-accessible cavity inside the fibrils' core and undergoes extensive rotameric exchange. Q-CEST permits us to refine the rotameric exchange model for this site and allows the more precise determination of populations and rotameric exchange rate constants than line shape analysis.
Keyphrases
  • solid state
  • single molecule
  • molecular dynamics
  • magnetic resonance
  • high resolution
  • mass spectrometry
  • molecular dynamics simulations
  • ms ms
  • brain injury
  • room temperature
  • solid phase extraction