Login / Signup

Lanthanum Doping in Zinc Oxide for Highly Reliable Thin-Film Transistors on Flexible Substrates by Spray Pyrolysis.

Ravindra Naik BukkeJewel Kumer SahaNarendra Naik MudeYoungoo KimSuhui LeeJin Jang
Published in: ACS applied materials & interfaces (2020)
Solution-processed metal-oxide thin-film transistors (TFTs) are considered as one of the most favorable devices for next-generation, large-area flexible electronics. In this paper, we demonstrate the excellent material properties of lanthanum-zinc oxide (LaZnO) thin films deposited by spray pyrolysis and their application to TFTs. The threshold voltage of the LaZnO TFTs shifts toward positive gate voltage, and the mobility decreases with increasing lanthanum ratio in ZnO from 0 to 20%. The purification of the LaZnO precursor (P-LaZnO) further improves the device performance. The P-LaZnO TFT exhibits a field-effect mobility of 22.43 cm2 V-1 s-1, zero hysteresis voltage, and negligible threshold voltage VTH shift under positive bias temperature stress. The enhancement in the electrical properties is due to a decrease in grain size, smooth surface roughness, and reduction in the trap density in the LaZnO film. X-ray photoelectron spectroscopy (XPS) results confirm the presence of La in the TFT channel and at/near the interface of the LaZnO and ZrOx gate insulator, leading to fewer interfacial traps. The flexible P-LaZnO TFT fabricated on the polyimide substrate exhibits a mobility of 17.64 cm2 V-1 s-1 and a negligible VTH shift under bias stress. Also, the inverter made of LZO TFTs is working well with a voltage gain of 17.74 (V/V) at 4 V. Therefore, the LaZnO TFT is a promising device for next-generation flexible displays.
Keyphrases
  • solid state
  • high resolution
  • oxide nanoparticles
  • magnetic resonance
  • mass spectrometry
  • heat stress
  • electron transfer