Molecular cloning of MDA5, phylogenetic analysis of RIG-I-like receptors (RLRs) and differential gene expression of RLRs, interferons and proinflammatory cytokines after in vitro challenge with IPNV, ISAV and SAV in the salmonid cell line TO.
I-K G NerbøvikM A SolheimH Ø EggestølA RønnesethR A JakobsenH I WergelandGyri Teien HauglandPublished in: Journal of fish diseases (2017)
The RIG-I receptors RIG-I, MDA5 and LGP2 are involved in viral recognition, and they have different ligand specificity and recognize different viruses. Activation of RIG-I-like receptors (RLRs) leads to production of cytokines essential for antiviral immunity. In fish, most research has focused on interferons, and less is known about the production of proinflammatory cytokines during viral infections. In this study, we have cloned the full-length MDA5 sequence in Atlantic salmon, and compared it with RIG-I and LGP2. Further, the salmonid cell line TO was infected with three fish pathogenic viruses, infectious pancreatic necrosis virus (IPNV), infectious salmon anaemia virus (ISAV) and salmonid alphavirus (SAV), and differential gene expression (DEG) analyses of RLRs, interferons (IFNa-d) and proinflammatory cytokines (TNF-α1, TNF-α2, IL-1β, IL-6, IL-12 p40s) were performed. The DEG analyses showed that the responses of proinflammatory cytokines in TO cells infected with IPNV and ISAV were profoundly different from SAV-infected cells. In the two aforementioned, TNF-α1 and TNF-α2 were highly upregulated, while in SAV-infected cells these cytokines were downregulated. Knowledge of virus recognition by the host and the immune responses during infection may help elucidate why and how some viruses can escape the immune system. Such knowledge is useful for the development of immune prophylactic measures.