Login / Signup

Comparison of upper sublethal and lethal temperatures in three species of rice planthoppers.

Shahbaz AliPei LiAsad AliMaolin Hou
Published in: Scientific reports (2019)
Temperature is an important environmental factor for ectotherms' fitness and survival. The upper sublethal and lethal temperatures were compared between adults of three closely related destructive planthopper species, the small brown planthopper (Laodelphax striatellus, SBPH), the brown planthopper (Nilaparvata lugens, BPH), and the white-backed planthopper (Sogatella furcifera, WBPH) in the absence and presence of the host plant (Oryza sativa, var. Taichong1). Values of the critical thermal maxima (CTmax) were higher in SBPH than in both BPH and WBPH and higher in BPH than in WBPH, and values of the heat coma temperatures (HCT) were higher in both BPH and SBPH than in WBPH. CTmax and HCT values were higher in the presence than in the absence of plant material. Between sexes, females generally showed higher CTmax and HCT than males. The upper lethal temperatures (ULT50) measured in the absence of plant material were not significantly different among the planthopper species. The planthoppers also exhibited different behaviors in an increasing temperature regime, with fewer insects dropping-off from the plant in SBPH than in BPH and WBPH. These results indicate that SBPH and BPH are more heat tolerant than WBPH. The findings highlight the biological divergence in closely related planthopper species and the importance of performing the heat tolerance measurement in an ecologically relevant setting, which serves to predict seasonal and spatial occurrence patterns of the destructive planthopper species.
Keyphrases
  • benign prostatic hyperplasia
  • lower urinary tract symptoms
  • risk assessment
  • physical activity
  • cell cycle arrest
  • climate change
  • signaling pathway