Login / Signup

Spontaneous Imbibition in Paper-Based Microfluidic Devices: Experiments and Numerical Simulations.

Yang WangDingding YeXun ZhuYang YangChaozhong QinRong ChenQiang Liao
Published in: Langmuir : the ACS journal of surfaces and colloids (2022)
Microfluidic paper-based analytical devices (μPADs) have quickly been an excellent choice for point-of-care diagnostic platforms ever since they appeared. Because capillary force is the main driving force for the transport of analytes in μPADs, low spontaneous imbibition rates may limit the detection sensitivity. Therefore, quantitative understanding of internal spontaneous capillary flow progress is requisite for designing sensitive and accurate μPADs. In this work, experimental and numerical studies have been performed to investigate the capillary flow in a typical filter paper. We use light-transmitting imaging technology to study wetting saturation changes in the paper. Our experimental results show an obvious transition of a saturated wetting front into an unsaturated wetting front as the imbibition proceeds. We find that the single-phase Darcy model considerably overestimates the temporal wetting penetration depths. Alternatively, we use the Richards equation together with the two-phase flow material properties that are obtained from the image-based pore-network modeling of the filter paper. Moreover, we have considered a dynamic term in the capillary pressure due to strong wetting dynamics in spontaneous imbibition. As a result, the numerical predictions of spontaneous imbibition in the paper are significantly improved. Our studies provide insights into the development of a quantitative spontaneous imbibition model for μPADs applications.
Keyphrases
  • high resolution
  • single molecule
  • machine learning
  • photodynamic therapy