Login / Signup

Exceptionally Stable Microporous Organic Frameworks with Rigid Building Units for Efficient Small Gas Adsorption and Separation.

Weiqiu WenPeter S ShuttleworthHangbo YueJuan P Fernández-BlázquezJianwei Guo
Published in: ACS applied materials & interfaces (2020)
Three microporous organic frameworks (hereafter denoted as MPOF-Ads) based on a rigid adamantane core have been successfully synthesized via Sonogashira-Hagihara polycondensation coupling in high yields, 83.7-94.6%. The obtained amorphous MPOF-Ads networks have high Brunauer-Emmett-Teller surface areas (up to 737.3 m2 g-1), narrow pore size distribution (0.95-1.06 nm), and superior thermal (the initial decomposition temperature T5% under an N2 atmosphere can reach 410 °C) and chemical stability (no apparent degradation in common organic solvents or strong acid/base solutions after 7 days). At 273 K and 1.0 bar, these MPOF-Ads networks present good uptake capacities for small gas molecules (13.9 wt % CO2 and 1.66 wt % CH4) for which the presence of high surface area, predominant microporosity, and narrow pore size distribution are beneficial. In addition, the as-prepared MPOF-Ads networks possess moderate isosteric heats for CO2 (Qst = 19.5-30.3 kJ mol-1) and show desired CO2/N2 and CO2/CH4 selectivity (36.3-38.4 and 4.1-4.3 based on Henry's law and 17.88-24.92 and 4.24-5.70 based on ideal adsorbed solution theory, respectively). With the demonstrated properties, the synthesized MPOF-Ads networks display potential for small gas storage and separation that can be used in harsh environments because of their superior physical and chemical stability.
Keyphrases