Dynamics of erythrocytes in oscillatory shear flows: effects of S/V ratio.
Qiang ZhuXiaobo BiPublished in: Soft matter (2022)
By combining a multiscale structural model of erythrocyte with a fluid-cell interaction model based on the boundary-integral method, we numerically investigate the dynamic response of erythrocytes in oscillatory shear flows (OSFs). The goal is to develop a novel experimental method to test the structural robustness of erythrocytes in transient mechanical loads with small time scales, conditions closely imitating the mechanical environment in vivo . Following the discovery of multiple response modes (wheeling, mode 1 tank treading, and mode 2 tank treading) under these conditions (Zhu & Asaro, 2019), we concentrate on deformation and stress inside RBCs driven by OSF, especially shear deformation of the membrane and the skeleton-bilayer dissociation stress, parameters that are related to mechanically induced structural remodeling such as vesiculation. Effects related to changes in surface area-to-volume (S/V) ratio are considered. Our results show that with the variation of the S/V ratio there could be significant change in terms of the occurrence of response modes even if other parameters are kept unchanged. For example, by reducing the S/V ratio of the cell, an asymmetric mode featuring a mixture of the wheeling and mode 2 tank treading responses is discovered. This mode is found to be associated with large skeleton-bilayer dissociation stress so that its potential impact on OSF-driven vesiculation should not be overlooked. By systematically examining the dependencies of skeleton deformation and skeleton-bilayer dissociation stress upon S/V, this study is critical for the development of the OSF technique in applications such as diagnosis since cell conditions are often reflected in its geometric properties.