Login / Signup

A CCSD(T)-Based 4-Body Potential for Water.

Apurba NandiChen QuPaul L HoustonRiccardo ConteQi YuJoel M Bowman
Published in: The journal of physical chemistry letters (2021)
High-level, ab initio calculations find that the 4-body (4-b) interaction is needed to account for near-100% of the total interaction energy for water clusters as large as the 21-mer. Motivated by this, we report a permutationally invariant polynomial potential energy surface (PES) for the 4-body interaction. This machine-learned PES is a fit to 2119 symmetry-unique, CCSD(T)-F12a/haTZ 4-b interaction energies. Configurations for these come from tetramer direct-dynamics calculations, fragments from an MD water simulation at 300 K, and tetramer fragments in a variety of water clusters. The PIP basis is purified to ensure that the PES goes rigorously to zero in monomer+trimer and dimer+dimer dissociations. The 4-b energies of isomers of the hexamer calculated with the new PES are shown to be in better agreement with benchmark CCSD(T) results than those from the MB-pol potential. Tests on larger clusters further validate the high-fidelity of the PES. The PES is shown to be fast to evaluate, taking 2.4 s for 105 evaluations on a single core of 2.4 GHz Intel Xeon processor, and significantly faster using a parallel version of the PES.
Keyphrases
  • density functional theory
  • molecular dynamics
  • molecular dynamics simulations
  • monte carlo
  • liquid chromatography