Login / Signup

Mesoporous Carbon for High-Performance Near-Neutral Zinc-Air Batteries.

Fengmei WangKe QiuWei ZhangKerun ZhuJiawei ChenMochou LiaoXiaoli DongFei Wang
Published in: Small (Weinheim an der Bergstrasse, Germany) (2023)
Near-neutral zinc-air batteries (ZABs) have garnered significant research interest due to their high energy density, exceptional electrochemical reversibility, and adaptability to ambient air. However, these batteries suffer from substantial electrochemical polarization, low energy efficiency, and poor rate performance. In this study, a mesoporous carbon (meso-C) with a high specific surface area (1081 m 2 g -1 ) and abundant porous structure for the cathode of near-neutral ZABs using a scalable synthesis method is prepared. The meso-C-based cathode is endowed with stable hydrophobicity and abundant electrochemical active sites, which considerably improve the energy efficiency, rate performance, and cycle life of the battery compare to commercial carbon black-based cathode when applied to near-neutral ZABs with 1 mol kg -1 (1 m) zinc acetate and 1 m zinc trifluoromethanesulfonate electrolytes. Additionally, the mesopores of meso-C facilitate the construction of better three-phase reaction interfaces and contribute to better electrochemical reversibility. The work presents a general and scalable approach for carbon materials in the cathode of near-neutral ZABs.
Keyphrases