Login / Signup

Acute responses of comprehensive gonadosteroids and corticosteroids to resistance exercise before and after 10 weeks of supervised strength training.

Simon WalkerKeijo HäkkinenRobert U NewtonJames F MarkworthShikha PundirGuy Gregory HaffDavid Cameron-SmithAnthony John Blazevich
Published in: Experimental physiology (2020)
Resistance training is a potent stimulus for muscle growth, and steroid hormones are known to play a role in this adaptation. However, very little is known about the acute exercise-induced gonadosteroid and corticosteroid hormone responses, including those of key lower-concentration intermediate hormones. The present study determined the acute responses of these steroid hormone families using quantitative ultra-high performance liquid chromatography tandem mass spectrometry after resistance exercise in strength-trained men. Venous and fingertip blood samples were obtained pre-, mid-, 5 min post- and 15 min post-resistance exercise, both before and after 10 weeks of supervised resistance training. The experimental resistance exercise sessions consisted of three sets of 10 repetitions of bilateral leg-press exercise and three sets of 10 repetitions of unilateral knee-extension exercise, with 2 and 1 min recovery between sets, respectively. Statistically significant (P < 0.05) increases in the concentration of hormones in the gonadosteroid [including dehydroepiandrosterone (DHEA), androstenedione, testosterone and estrone] and the corticosteroid (including cortisol, corticosterone and cortisone) families were demonstrated after both experimental resistance exercise sessions, irrespective of training status. Correlation analyses revealed relationships between the following hormones: (i) DHEA and androstenedione; (ii) DHEA and cortisol; (iii) androstenedione and estrone; and (iv) 11-deoxycortisol and cortisol. Testosterone appears to increase acutely and independently of other intermediary hormones after resistance exercise. In conclusion, lower-concentration intermediary gonadosteroids (e.g. estrone) and corticosteroids (e.g. corticosterone) respond robustly to resistance exercise in strength-trained men, although it seems that testosterone concentrations are regulated by factors other than the availability of precursor hormones and changes in plasma volume.
Keyphrases
  • resistance training
  • high intensity
  • body composition
  • physical activity
  • liquid chromatography tandem mass spectrometry
  • liver failure
  • drug induced
  • skeletal muscle
  • ms ms