Login / Signup

An investigation of how relative precision of target encoding influences metacognitive performance.

Sanne KellijJohannes FahrenfortHakwan LauMegan A K PetersBrian Odegaard
Published in: Attention, perception & psychophysics (2020)
Detection failures in perceptual tasks can result from different causes: sometimes we may fail to see something because perceptual information is noisy or degraded, and sometimes we may fail to see something due to the limited capacity of attention. Previous work indicates that metacognitive capacities for detection failures may differ depending on the specific stimulus visibility manipulation employed. In this investigation, we measured metacognition while matching performance in two visibility manipulations: phase-scrambling and the attentional blink. As in previous work, metacognitive asymmetries emerged: despite matched type 1 performance, metacognitive ability (measured by area under the ROC curve) for reporting stimulus absence was higher in the attentional blink condition, which was mainly driven by metacognitive ability in correct rejection trials. We performed Signal Detection Theoretic (SDT) modeling of the results, showing that differences in metacognition under equal type I performance can be explained when the variance of the signal and noise distributions are unequal. Specifically, the present study suggests that phase scrambling signal trials have a wider distribution (more variability) than attentional blink signal trials, leading to a larger area under the ROC curve for attentional blink trials where subjects reported stimulus absence. These results provide a theoretical basis for the origin of metacognitive differences on trials where subjects report stimulus absence, and may also explain previous findings where the absence of evidence during detection tasks results in lower metacognitive performance when compared to categorization.
Keyphrases
  • working memory
  • loop mediated isothermal amplification
  • label free
  • real time pcr
  • emergency department
  • air pollution
  • social media
  • health information
  • monte carlo